MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2eu5 Structured version   GIF version

Theorem 2eu5 2365
Description: An alternate definition of double existential uniqueness (see 2eu4 2364). A mistake sometimes made in the literature is to use ∃!𝑥∃!𝑦 to mean "exactly one 𝑥 and exactly one 𝑦." (For example, see Proposition 7.53 of [TakeutiZaring] p. 53.) It turns out that this is actually a weaker assertion, as can be seen by expanding out the formal definitions. This theorem shows that the erroneous definition can be repaired by conjoining 𝑥∃*𝑦𝜑 as an additional condition. The correct definition apparently has never been published. (∃* means "exists at most one.") (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
2eu5 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑤   𝜑,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem 2eu5
StepHypRef Expression
1 2eu1 2361 . . 3 (∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
21pm5.32ri 620 . 2 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑))
3 eumo 2321 . . . . 5 (∃!𝑦𝑥𝜑 → ∃*𝑦𝑥𝜑)
43adantl 453 . . . 4 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃*𝑦𝑥𝜑)
5 2moex 2352 . . . 4 (∃*𝑦𝑥𝜑 → ∀𝑥∃*𝑦𝜑)
64, 5syl 16 . . 3 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∀𝑥∃*𝑦𝜑)
76pm4.71i 614 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ∧ ∀𝑥∃*𝑦𝜑))
8 2eu4 2364 . 2 ((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
92, 7, 83bitr2i 265 1 ((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 177  wa 359  wal 1549  wex 1550  ∃!weu 2281  ∃*wmo 2282
This theorem is referenced by:  2reu5lem3  3141
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286
  Copyright terms: Public domain W3C validator