MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnleltp1 Structured version   GIF version

Theorem nnleltp1 10367
Description: Natural number ordering relation. (Contributed by NM, 13-Aug-2001.) (Proof shortened by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
nnleltp1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴 < (𝐵 + 1)))

Proof of Theorem nnleltp1
StepHypRef Expression
1 nnz 10341 . 2 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
2 nnz 10341 . 2 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
3 zleltp1 10364 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴𝐵𝐴 < (𝐵 + 1)))
41, 2, 3syl2an 465 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴𝐵𝐴 < (𝐵 + 1)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 178  wa 360  wcel 1728   class class class wbr 4243  (class class class)co 6117  1c1 9029   + caddc 9031   < clt 9158  cle 9159  cn 10038  cz 10320
This theorem is referenced by:  eftlub  12748  eirrlem  12841  sqr2irr  12886  pcmpt  13299  infpnlem2  13317  prmreclem5  13326  ovolicc2lem3  19453  voliunlem1  19482  lgsquadlem2  21177  lgamcvg2  24874  wallispilem3  27904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-pss 3325  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-tp 3851  df-op 3852  df-uni 4045  df-iun 4124  df-br 4244  df-opab 4298  df-mpt 4299  df-tr 4334  df-eprel 4529  df-id 4533  df-po 4538  df-so 4539  df-fr 4576  df-we 4578  df-ord 4619  df-on 4620  df-lim 4621  df-suc 4622  df-om 4881  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-riota 6585  df-recs 6669  df-rdg 6704  df-er 6941  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-nn 10039  df-n0 10260  df-z 10321
  Copyright terms: Public domain W3C validator