MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rphalflt Structured version   GIF version

Theorem rphalflt 10676
Description: Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rphalflt (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)

Proof of Theorem rphalflt
StepHypRef Expression
1 elrp 10652 . 2 (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴))
2 halfpos 10236 . . 3 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ (𝐴 / 2) < 𝐴))
32biimpa 472 . 2 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 / 2) < 𝐴)
41, 3sylbi 189 1 (𝐴 ∈ ℝ+ → (𝐴 / 2) < 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 360  wcel 1728   class class class wbr 4243  (class class class)co 6117  cr 9027  0cc0 9028   < clt 9158   / cdiv 9715  2c2 10087  +crp 10650
This theorem is referenced by:  rpnnen2lem11  12862  sqr2irr  12886  metcnpi3  18614  cfilucfilOLD  18637  cfilucfil  18638  reperflem  18887  iccntr  18890  icccmplem2  18892  reconnlem2  18896  cnllycmp  19019  bcthlem5  19319  minveclem3  19368  ivthlem2  19387  lhop1lem  19935  dvcnvre  19941  aaliou  20293  aaliou2b  20296  cosordlem  20471  tanord1  20477  argregt0  20543  argrege0  20544  isosctrlem1  20700  asinsin  20770  asin1  20772  atan1  20806  lgsqrlem2  21164  lgsquadlem2  21177  lgsquadlem3  21178  2sqlem8  21194  chebbnd1lem2  21202  pntibnd  21325  pntlem3  21341  ubthlem1  22410  nmcexi  23567  lgamucov  24857  ftc1anc  26330  stoweidlem62  27899  isosctrlem1ALT  29220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1628  ax-9 1669  ax-8 1690  ax-13 1730  ax-14 1732  ax-6 1747  ax-7 1752  ax-11 1764  ax-12 1954  ax-ext 2424  ax-sep 4361  ax-nul 4369  ax-pow 4412  ax-pr 4438  ax-un 4736  ax-resscn 9085  ax-1cn 9086  ax-icn 9087  ax-addcl 9088  ax-addrcl 9089  ax-mulcl 9090  ax-mulrcl 9091  ax-mulcom 9092  ax-addass 9093  ax-mulass 9094  ax-distr 9095  ax-i2m1 9096  ax-1ne0 9097  ax-1rid 9098  ax-rnegex 9099  ax-rrecex 9100  ax-cnre 9101  ax-pre-lttri 9102  ax-pre-lttrn 9103  ax-pre-ltadd 9104  ax-pre-mulgt0 9105
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1661  df-eu 2292  df-mo 2293  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2717  df-rex 2718  df-reu 2719  df-rmo 2720  df-rab 2721  df-v 2967  df-sbc 3171  df-csb 3271  df-dif 3312  df-un 3314  df-in 3316  df-ss 3323  df-nul 3617  df-if 3768  df-pw 3830  df-sn 3849  df-pr 3850  df-op 3852  df-uni 4045  df-br 4244  df-opab 4298  df-mpt 4299  df-id 4533  df-po 4538  df-so 4539  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5453  df-fun 5491  df-fn 5492  df-f 5493  df-f1 5494  df-fo 5495  df-f1o 5496  df-fv 5497  df-ov 6120  df-oprab 6121  df-mpt2 6122  df-riota 6585  df-er 6941  df-en 7146  df-dom 7147  df-sdom 7148  df-pnf 9160  df-mnf 9161  df-xr 9162  df-ltxr 9163  df-le 9164  df-sub 9331  df-neg 9332  df-div 9716  df-2 10096  df-rp 10651
  Copyright terms: Public domain W3C validator